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Introduction to optics measurements at LHC

• Beam position monitors (BPMs) record the turn-by-turn data measuring the oscillations of the 

excited beam

• Reconstruction of the optics mainly concerned by the phase advances obtained from the 

measured data using Fourier transformation analysis
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• One of the main parameters is beta-beating: ratio of the measured betatron function with 

respect to the nominal designed function

• The measured optics is compared then to the nominal model of the machine in order to 

compute the corrections



1. Faulty BPM data

• 1024 BPMs per beam around the ring to measure 

the turn-by-turn data

• Statistical analysis of the past measurements show that ~10% of BPMs are 

faulty

• Optics functions are affected by occurrences of faulty signal

• some artifacts cannot be recognized in turn-by-turn data 

• reasons, relevant features and their correlations are unknown 

• time-consuming manual “cleaning” and analysis re-computation

• Unphysical values still escape our current automatic cleaning tools 

 ML as an alternative solution to improve the optics measurements
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1. Faulty BPM data



1. Faulty BPM data

• Current cleaning tools
• Basic pre-defined cuts (distance between signal peaks, flat signals, etc.) and known 

bad BPMs are removed in the first step

• Advanced techniques*:

• SVD: Singular vectors represent the variation of physical modes describing the 

beam motion: faulty BPMs produce modes with spatial vectors consisting of 

localized peaks defined by a certain threshold.

• Fourier transform in windows: faulty signal show a randomly populated Fourier 

spectrum: computing the RMS of the amplitudes of the spectral lines within one or 

several windows detect bad BPMs
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* R. Calaga and R. Tomas “Statistical analysis of RHIC beam position monitors performance”



2. Cluster analysis of measured signal

Manual cleaning and data observation required before trying to reconstruct the optics 
from the signals

• doesn’t prevent unphysical values in obtained optics functions

• manual cleaning might produce different results

• is likely that some wrong values still escape human intervention

General Idea:
• we do not want to replicate the currently used automatic cleaning tools, so training data set 

could be built only combining automatic and manual cleaning result

 unsupervised learning approach is preferable

• assuming most of the BPMs measure correctly, the bad BPMs should appear as an 
anomaly, but the relevant parameters are unknown

• consider all possible parameters and separate into regions
 Cluster analysis
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2. Cluster analysis of measured signal

• Signals from faulty BPM can be considered as “outliers” and 

isolated into a separate cluster

• Data visualization is needed to choose appropriate clustering method

• Data preprocessing steps are needed before applying cluster analysis

• How to define algorithm parameters for diverse optics settings?

• How to evaluate the results? What is the relevant parameter?
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2. Cluster analysis of measured signal
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K-means* as basic clustering approach:
• Starting with randomly chosen data points as 

cluster centers, each point is assigned to the 

closest center

• Move centers to the centroids of the clusters, 

reassign the points to the nearest center

• Repeat until moving the centroid gives no 

improvement (based on total squared distance 

between each point and cluster centroid) 

*Stuart P. Lloyd. Least squares quantization in PCM http://shabal.in/visuals/kmeans



2. Cluster analysis of measured signal

• Implementation
• sklearn.cluster.KMeans

• Features: amplitude, tune, phase advance beating 

(obtained from harmonic analysis on turn-by-turn data)

• K-means allows only 2D-Clustering: all possible 

combinations of features are evaluated

• all features scaled to the [0,1] range to be represented in a 

common space

• IRs and arcs data treated separately since the beam 

behaves differently in these regions.
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K-means with 3 clusters: Optics measurement from LHC 

Machine Development 

12

IRs Arcs



2. Cluster analysis of measured signal

• Evaluation of K-means algorithm:

• Appropriate number of clusters unknown 

• Very sensitive to outliers

• Choice of the centroids affects the clustering results

• also an outlier can become a centroid

• unstable results

 DBSCAN: Density-Based Spatial Clustering of application with noise*

13

* “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases 

with Noise” Ester, M., H. P. Kriegel, J. Sander, and X. Xu



2. Cluster analysis of measured signal

DBSCAN:
• relies on density-based notion of clusters

of arbitrary shape

• Core points: build a “neighbourhood” according to
a given distance

Non-core points: are inside a neighbourhood,
but don’t have enough points around to build
a new neighbourhood

Noise: don’t have enough points in the neighbourhood
and are too far away from any of core points

• noise can be easily detected as data points
not belonging to any of clusters
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https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/



DBSCAN ε = 0.3, MinPts = 80, Optics measurement from LHC Machine 

Development 
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Implementation:

• Scikit Learn

• tune, amplitude and phase advance

beating as features rescaled to 

[0,1] range

• Clustering in n-dimensional space is

possible: no combinations of features are 

needed

• Set of measurements: we classify 

a BPM as bad if faulty signal is 

detected in at least one measurement  



DBSCAN ε = 0.3, MinPts = 80, Optics measurement from LHC Machine 

Development 
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2. Cluster analysis of measured signal

Conclusions:
• DBSCAN is more suitable for the given problem compared to K-means
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K-means DBSCAN



2. Cluster analysis of measured signal

• the cluster constellation is stable over several runs

• more information might be obtained from analysing the clusters of good BPMs
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How does an autoencoder work?*

• Tries to reproduce in its output whatever 
comes in the input  f(x) = x

• Encoder: compressing the input data to lower 
dimensions
Decoder: Reconstructing the data into original input

• The difference between output and input is measured 
using a loss function

General idea of bad BPMs detection:

• Since the majority of BPMs are good, the trained model will learn the behaviour of valid signal

• The loss function will measure the difference between a given point and the learned general 
case

• Loss above a defined threshold  anomaly detected!

3. Autoencoder for anomaly detection
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* https://cds.cern.ch/record/2274402



4. Conclusions and future tasks

• Cluster analysis
• Cluster analysis improvements potentially possible using ensemble methods (e.g. Random 

Forest*)

• The results of cluster analysis can be used as trainings data for a binary classificator to detect 

bad BPMs

• Classifier model that outputs the probability for a BPM to be bad

• Deep neural networks
• Building a deep autoencoder no feature engineering will be needed since the hidden layers will 

extract and learn the relevant features  direct application on turn-by-turn data is possible

• Beyond anomaly detection
• Study on prediction based optics correction using neural networks
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http://scikit-learn.org/stable/modules/outlier_detection.html#isolation-forest
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